2 research outputs found

    Computer vision based navigation for spacecraft proximity operations

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2010.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student submitted PDF version of thesis.Includes bibliographical references (p. 219-226).The use of computer vision for spacecraft relative navigation and proximity operations within an unknown environment is an enabling technology for a number of future commercial and scientific space missions. This thesis presents three first steps towards a larger research initiative to develop and mature these technologies. The first step that is presented is the design and development of a " flight-traceable" upgrade to the Synchronize Position Hold Engage Reorient Experimental Satellites, known as the SPHERES Goggles. This upgrade enables experimental research and maturation of computer vision based navigation technologies on the SPHERES satellites. The second step that is presented is the development of an algorithm for vision based relative spacecraft navigation that uses a fiducial marker with the minimum number of known point correspondences. An experimental evaluation of this algorithm is presented that determines an upper bound on the accuracy and precision of this system. The third step towards vision based relative navigation in an unknown environment is a preliminary investigation into the computational issues associated with high performance embedded computing. The computational characteristics of vision based relative navigation algorithms are discussed along with the requirements that they impose on computational hardware. A trade study is performed which compares a number of dierent commercially available hardware architectures to determine which would provide the best computational performance per unit of electrical power.by Brent Edward Tweddle.S.M

    Computer vision-based localization and mapping of an unknown, uncooperative and spinning target for spacecraft proximity operations

    Get PDF
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2013.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (pages 399-410).Prior studies have estimated that there are over 100 potential target objects near the Geostationary Orbit belt that are spinning at rates of over 20 rotations per minute. For a number of reasons, it may be desirable to operate in close proximity to these objects for the purposes of inspection, docking and repair. Many of them have an unknown geometric appearance, are uncooperative and non-communicative. These types of characteristics are also shared by a number of asteroid rendezvous missions. In order to safely operate in close proximity to an object in space, it is important to know the target object's position and orientation relative to the inspector satellite, as well as to build a three-dimensional geometric map of the object for relative navigation in future stages of the mission. This type of problem can be solved with many of the typical Simultaneous Localization and Mapping (SLAM) algorithms that are found in the literature. However, if the target object is spinning with signicant angular velocity, it is also important to know the linear and angular velocity of the target object as well as its center of mass, principal axes of inertia and its inertia matrix. This information is essential to being able to propagate the state of the target object to a future time, which is a key capability for any type of proximity operations mission. Most of the typical SLAM algorithms cannot easily provide these types of estimates for high-speed spinning objects. This thesis describes a new approach to solving a SLAM problem for unknown and uncooperative objects that are spinning about an arbitrary axis. It is capable of estimating a geometric map of the target object, as well as its position, orientation, linear velocity, angular velocity, center of mass, principal axes and ratios of inertia. This allows the state of the target object to be propagated to a future time step using Newton's Second Law and Euler's Equation of Rotational Motion, and thereby allowing this future state to be used by the planning and control algorithms for the target spacecraft. In order to properly evaluate this new approach, it is necessary to gather experiby Brent Edward Tweddle.Ph. D
    corecore